
Animating Typescript using Aesthetically
Evolved Images

Ashley Mills, ashley@ashleymills.com

The University of Kent, School of Computing

Abstract. The genotypic functions from apriori aesthetically evolved
images are mutated progressively and their phenotypes sequenced tem-
porally to produce animated versions. The animated versions are mapped
onto typeface and combined spatially to produce animated typescript.
The output is then discussed with reference to computer aided design
and machine learning.

Keywords: aesthetic evolution animated, animated typeface, typescript

1 Introduction

Systems for evolving aesthetic images, whilst still unfamiliar in popular culture,
are academically well known and date back at least 20 years [14,15,6,13,8]. Or-
dinarily the output of an image-centric aesthetic evolution system is seen as the
end product in itself; aesthetically pleasing images are the goal. The genotypes
of these images however encode the labour of a prolonged and iteratively ap-
plied intelligent cognitive filtering process. This serves to apriori mark out these
artifacts as cognitively interesting and artistically compelling.

It is prudent therefore to make use of these creatively valuable artifacts in
producing further creative output. With this motivation, in this work, the output
of an Aesthetic Evolution (AE) system based on [10] is used to produce animated
typefaces. This work focuses on using AE output to animate existing typefaces,
which sets it apart from work such as [7] which focuses on the construction of a
system to evolve novel typefaces.

The rest of this document is outlined as follows, in Section-2 we briefly de-
scribe the AE system which generates the image inputs for typeface animation,
in Section-3 we explain how the images, or rather their genoyptic functions, can
be modulated to produce animation, in Section-4 we describe how these anima-
tions can be mapped to individual glyphs, and in Section-5 we explain how the
last can be combined into typescript. Finally, in Section-6 we discuss the artistic
applications and potential machine learning applications that this work inspires.

2 Aesthetic Evolution Basis

The aesthetic evolution system used here employs a classical Cartesian coordi-
nate model [14] as follows. Images are represented genotypically as a triplet of



function trees; one tree for each color in the RGB colorspace. The function trees
are initially grown stochastically from a pool of primitive function nodes such
as sin, cos, etc with arguments that are themselves either recursively function
nodes, or terminal primitives such as numerical constants or external variables.
In the set of terminal primitives, the variables x and y exist to represent the
Cartesian coordinates of the image and at least one must occur in each gener-
ated function tree to produce a valid image.

To produce an image, the genotypic function triplet is evaluated for each
pixel, i.e for each x and y coordinate of the output image, where x and y are
normalized, irrespective of image size, to fall within the range [0, 1]. Thus, the
leftmost pixel of an image assumes the value x = 0 and the rightmost the value
x = 1. The return values from the evaluated triplet provide the RGB values for
each pixel of the image respectively. A trivial example of such a function triplet
is shown in Figure 1, along with its image. Note that the triplet members are
the three branches that enter the function “new hsv”.

Fig. 1. A simple functional triplet is shown on the left along with its phenotypic ex-
pression, the image, on the right. Note in this case, the triplet passes through an HSV
colorspace before entering the RGB colorspace.

Successive generations of images are obtained in the well known manner of
visual cortex guided manual selection, followed by randomly seeded mutation
and crossover. After many such generations, the images produced converge on
aesthetically pleasing forms. These images are used as the input to the ani-
mated typeface system described subsequently. For more information about the
aesthetic evolution system used here, please see [10].

An interesting and useful feature of this AE system is that it outputs phe-
notype files whose genotypes are embedded within them: each image is output
as a JPEG and the genotype is stored in a JPEG metadata segment (APP0
marker segment) of that image. By combining genotype and phenotype into a



single file whose format conforms with an existing standard, the output images
can be viewed and loaded by a plethora of existing software, which makes for
convenient manipulation and organization. It also makes it a straightforward
matter to obtain the genotype for an image when it is desired to manipulate the
underlying form. To avoid namespace confusion, the format uses the extension
“exp.jpg” meaning expression embedded JPEG instead of the usual “.jpg”.

3 Animating Aesthetically Evolved Images

To animate a previously aesthetically evolved image, the underlying function
needs be modified through time. This process is relatively straightforward and
proceeds as follows. First, an image with appropriate artistic merit is selected
and it’s nodes are enumerated and examined. For example, the image in Figure 1
has four function nodes “hsv to rgb”, “new hsv”, “tangent”, and “multiply”
as well as four terminal nodes “x”, “9.6”, “x”, and “y”. After examining this
information, the artist might decide to modulate the leftmost x terminal by
replacing it with the constant values x = {0, 0.1, 0.2, ..., 1.0} to generate 10 new
functions. Each of the 10 resultant functions can then be evaluated to produce
10 animation frames.

As an example consider Figure 3 where an interesting function is animated
and 6 frames from the animation sequence are shown, taken as equidistant sam-
ples across the animated range.

In this particular case the function in question has 191 nodes, 120 of which
are functions and 71 of which are terminals. To produce the animation, the node
at index 22, which initially has the value x, has been replaced by x · k where
k ∈ {0.00, 0.01, 0.02, . . . 10.00}. Each of the latter substitutions generates a new
function which can be evaluated to produce a single animation frame.

In the AE system used here, the node “tweaks” are performed by passing
the base image (and it’s embedded genotype) to a custom tool called “evotool”.
This supports many kinds of manipulations for both the genotype and pheno-
type. As an example, the following invocation creates a new AE artifact called
“out.exp.jpg” by changing the terminal node at index 22 in the file “in.exp.jpg”
to “sin(x)”. The node index 22 was obtained by previous invocation of evotool
with the “node listt” command sequence which lists terminal nodes.

evotool node tweakt default 22 "sin(x)" out.exp.jpg in.exp.jpg

Thus the process of animating a function becomes a simple case of scripting
the use of evotool to create a sequence of progressively tweaked functions and
their phenotypes. The outputted image sequence can then be stitched together
using the opensource tool FFmpeg [1], in a manner such as:

ffmpeg -i out_%d.exp.jpg -c:v libx264 -crf 17 -c:a copy out.mkv

To encode the generated image sequence at the default of 25 frames per
second as an x264 [9] encoded movie within a Matroska [12] container.



Fig. 2. Six animation frames extracted from a sequence where the terminal at
index 22 of the underlying function has assumed the values x · k where k ∈
{0.00, 0.01, 0.02 . . . 10.00}

Some experimentation is required to find interesting modulations, as not all
nodes contribute constructively to the phenotype1. Of course, it is feasible to
modulate more than one node simultaneously, and the sequence of tweak in-
puts can be arbitrarily controlled. For example, the artist may wish to provide a
sequence of inputs consistent in magnitude differentials with that of a audio seg-
ment to produce animation that follows the sound. Several examples of animated
functions, created in this manner, including an audio-modulated examples, are
available to view online [2].

4 Mapping of Animated Functions to Typefaces

To produce an animated typeface, each glyph in the typeface must be mapped
to an animated function. The first step in this process is to generate mapping
images for each glyph. Here, for each glyph, the mapping image is simply that
glyph rendered using anti-aliasing in black against a white background at the
desired point size. Figure 3 shows such a mapping image along with a mapped
function.

In this case the mapped function has 258 nodes in total of which 100 are
function nodes and 158 are terminal nodes. To map the function to the glyph

1 It is interesting that this “junk DNA” accumulates in AE images, as it apparently
does in natural beings.



Fig. 3. An aesthetically evolved image mapped onto the roman alphabet glyph “e” in
typeface “Organo” [11] against a black background.

the function is evaluated for each pixel in the map that is not completely white,
i.e those pixels which are either part of the image proper, or part of the anti-
aliasing. For the anti-aliased pixels, the resultant function output is blended with
the background color in the output image in proportion to the level of grayscale
in the map, whereas the ordinary pixels take the function output directly. This
approach produces a straightforward silhouette of the evaluated function which
accords with the shape of the glyph selected, as is shown in Figure 3. This is
again achieved using “evotool” and the sub-command “map”, which takes only
three arguments: the output file, the mapping silhouette as a jpg, and the input
file to map:

evotool map default out.exp.jpg map.jpg in.exp.jpg

Thus, each frame from an animated function is mapped onto a glyph. Once
this has been done, the resultant image sequence is composited into a movie
as described in the previous section. Examples of animated glyphs can also be
viewed online [2].

5 Compositing Animated Typefaces into Animated
Typescript

By following the process outlined in the previous section for each glyph in a given
typeface, a corresponding typeface that is animated is obtained. By combining
animated glyphs together into strings, animated typescript can be created, which
provides a novel way to animate text.

Whilst there are many ways to composite video together, the method used
here is simple. FFmpeg is used to stitch together the chosen glyphs onto a
1080p white background into a single movie in their correct textual positions.
An example command is shown below:



ffmpeg -i E.mkv -i V.mkv -i O.mkv -i A.mkv -i R.mkv -i T.mkv \

-filter_complex "

color=size=1920x1080:c=white [a];

[0:v] scale=320x320 [E];

[1:v] scale=320x320 [V];

[2:v] scale=320x320 [O];

[3:v] scale=320x320 [A];

[4:v] scale=320x320 [R];

[5:v] scale=320x320 [T];

[a][E] overlay=shortest=1:y=200 [b];

[b][V] overlay=shortest=1:x=320:y=200 [c];

[c][O] overlay=shortest=1:x=640:y=200 [d];

[d][A] overlay=shortest=1:x=960:y=200 [e];

[e][R] overlay=shortest=1:x=1280:y=200 [f];

[f][T] overlay=shortest=1:x=1600:y=200 [g]"

Whilst this may seem somewhat involved, the invocation is quite straightfor-
ward: the input letters are passed to a complex filter that scales and labels each
letter, whereupon a series of composite overlays position the scaled input letters
accordingly. It is a trivial matter to automate the process of generating such a
command sequence for any number of letters, scaling, and relative positioning.
Figure 4 shows a single frame from an animation of the text “EVOART” in the
font Cantarell-Bold rendered using this process.

Fig. 4. A single frame from animated text “EVOART” in Cantarell-Bold font, where
every animation is the same for each letter.

In the animation frame shown in Figure 4, all of the glyphs are mapped to the
same animation. Whilst this effect may be desired by the artist or designer, it is
perhaps more interesting to vary the animation applied to each glyph used in the
sequence so that the combined typescript animation has a little more life to it.
Figure 6 shows an animation frame taken from constructed alphabet where where
each glyph has been animated in a different manner to the others. In this case
the evaluation range was modulated. Other approaches are to tweak different
nodes, or tweak more than one node, or change other evaluation constraints.

Figure 6 shows an animation frame using this alphabet where the word
“EVOART” has been rendered. Fully animated versions of Figures-4 and 6 can
be viewed online [2].



Fig. 5. A single frame from an animated alphabet in Cantarell-Bold font, where every
animation is slightly different for each letter.

Fig. 6. A single frame from animated text “EVOART” in Cantarell-Bold font, where
every animation is slightly different for each letter.

6 Discussion and Conclusion

The ability to animate typefaces with aesthetically pleasing functions is useful
for artistic and promotional purposes. It gives text a high quality and lifelike
feel that would be painstakingly hard to achieve using manual animation tech-
niques. After the initial cognitive filtering that yields the input functions, the
process amends itself to a high degree of automation. Given the limitless supply
of diversity available within a given AE system, this entails limitless diversity
and customization for animated typefaces and script.

Beyond the immediate artistic merit of animating aesthetically evolved im-
ages, at a deeper level there is something potentially very powerful here. An
animated function consists of a base function and a sequence of parameterized
mutations. The sequence of parameter values is a time series, and thus we can
think of an animated function phenotype as being the projection of a time series
into a high-dimensional space.

In machine learning (ML), Cover [4] showed that pattern classification prob-
lems are more likely to be linearly separable when projected non-linearly into a
high dimensional space. This idea is exploited by a wide range of ML techniques
from the seemingly artificial support vector machine [3] through to the biology
emulating Liquid State Machine neocortex model [5].

Typically, when animating a function as described in this paper, the parame-
terization sequence is chosen to be a simple geometric sequence with no external
meaning, but this need not be so, as was illustrated in the musically driven
example shown online [2]. We can extend this idea therefore to any time-series



data, including those which are bound to meaningful classification and prediction
problems.

Ergo, subject to sufficient funding, in future work we plan to explore the
potential of AE functions to the application of time-series classification and pre-
diction tasks. The reason this is particularly interesting is that the AE functions
have been preselected by an existing form of intelligence, and thus it is interest-
ing to ask to what extent this intelligence is embedded or correlated with the
selected functions and their applied computational power. Exploration in this
direction might start by evaluating the Lyapunov exponent [16] for some time
series for functions taken from increasingly greater generations, i.e images that
are increasingly “aesthetic”, to see if there is a correlation between that which
is aesthetically interesting and that which is computationally powerful.

The very fact that the created animations have structure, that is, that our
brains can distinguish earlier frames from later frames at all, indicates clearly
that the input information is not destroyed upon projection, strongly implying
underlying computational power. This makes the prospect of research in this
direction extremely exciting, and we look forward to observing the results.

References

1. Ffmpeg, http://www.ffmpeg.org
2. Multimedia examples of the artifacts described in this paper, http://www.evoart.

club/evomusart2016

3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995), http://dx.doi.org/10.1007/BF00994018

4. Cover, T.: Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition. Electronic Computers, IEEE Transactions
on EC-14(3), 326–334 (June 1965)

5. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14(11), 2531–2560 (2002)

6. Machado, P., Cardoso, A.: Nevar - the assessment of an evolutionary art tool. In:
Proceedings of the AISB’00 Symposium on Creative and Cultural Aspects and
Applications of AI and Cognitive Science, Birmingham, UK (2000)

7. Martins, T., Correia, J., Costa, E., Machado, P.: Evotype: Evolutionary type
design. In: Johnson, C., Carballal, A., Correia, J. (eds.) Evolutionary and Bi-
ologically Inspired Music, Sound, Art and Design, Lecture Notes in Computer
Science, vol. 9027, pp. 136–147. Springer International Publishing (2015), http:
//dx.doi.org/10.1007/978-3-319-16498-4_13

8. McCormack, J.: Aesthetic evolution of l-systems revisited. In: EvoWorkshops. pp.
477–488 (2004)

9. Merritt, L., Vanam, R.: x264: A high performance h. 264/avc encoder (2006),
http://neuron2.net/library/avc/overview_x264_v8_5.pdf

10. Mills, A.: Evolving aesthetic images. MSc Mini Project Thesis (2005), https://
www.ashleymills.com/ae/EvolutionaryArt.pdf

11. Nikolov, N.: Organo font landing page, http://logomagazin.com/organo-font/
12. Noé, A.: Matroska file format (2009), http://www.matroska.org/files/

matroska.pdf

http://www.ffmpeg.org
http://www.evoart.club/evomusart2016
http://www.evoart.club/evomusart2016
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/978-3-319-16498-4_13
http://dx.doi.org/10.1007/978-3-319-16498-4_13
http://neuron2.net/library/avc/overview_x264_v8_5.pdf
https://www.ashleymills.com/ae/EvolutionaryArt.pdf
https://www.ashleymills.com/ae/EvolutionaryArt.pdf
http://www.matroska.org/files/matroska.pdf
http://www.matroska.org/files/matroska.pdf


13. Rooke, S.: Eons of genetically evolved algorithmic images. Morgan Kaufmann Pub-
lishers Inc. (2002)

14. Sims, K.: Artificial evolution for computer graphics. Computer Graphics 25(4),
319–328 (July 1991)

15. Todd, S., Latham, W.: Evolutionary Art And Computers. Academic Press (1992)
16. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov expo-

nents from a time series. Physica D: Nonlinear Phenomena 16(3), 285–317 (1985)


	Animating Typescript using Aesthetically Evolved Images

